
On the Robustness of Decision-Focused Learning

Yehya Farhat
Syracuse University
ymfarhat@syr.edu

Abstract

Decision-Focused Learning (DFL) is an emerging learning
paradigm that tackles the task of training a machine learning
(ML) model to predict missing parameters of an incomplete
optimization problem, where the missing parameters are pre-
dicted. DFL trains an ML model in an end-to-end system,
by integrating the prediction and optimization tasks, provid-
ing better alignment of the training and testing objectives.
DFL has shown a lot of promise and holds the capacity to
revolutionize decision-making in many real-world applica-
tions. However, very little is known about the performance of
these models under adversarial attacks. We adopt ten unique
DFL methods and benchmark their performance under two
distinctly focused attacks adapted towards the Predict-then-
Optimize problem setting. Our study proposes the hypothesis
that the robustness of a model is highly correlated with its
ability to find predictions that lead to optimal decisions with-
out deviating from the ground-truth label. Furthermore, we
provide insight into how to target the models that violate this
condition and show how these models respond differently de-
pending on the achieved optimality at the end of their training
cycles.

1 Introduction
Decision Focused Learning (DFL) is an emerging learning
paradigm in the field of Machine Learning (ML) that con-
fronts the task of decision-making under uncertainty. The
problem of decision-making under uncertainty pertains it-
self to the sequential task of predicting uncertain quantities
using an ML model and then using a Constrained Optimiza-
tion (CO) model to optimize objectives using the predicted
quantities.

The conventionally adopted approach to this problem is
to consider both the predictive and optimization tasks sepa-
rately. This Two-Stage (TS) approach first involves training
an ML model using a traditional loss function such as MSE
to map the input features to the relevant parameters of the
CO problem. Where afterwards a specialized optimization
algorithm is used to solve the CO problem. This approach
has obvious advantages, in which the model learning phase
is well justified and independent of any secondary task be-
sides finding the best mapping between the input features
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and labels. In theory, this approach is infallible if we are able
to obtain a perfect model to make precise predictions. Indeed
if the predictions of the parameters by the trained model are
perfectly accurate, they would lead to correct specifications
of the CO models which can be solved to yield fully op-
timal solutions. However, in practice ML models fall short
of perfect accuracy which lead these errors propagating to
the CO models and which in turn lead to sub-optimal deci-
sions. This put forward the need of modelling the predictive
and decision process jointly. DFL is based on training the
ML model to make predictions that lead to good decisions.
DFl integrates prediction and optimization in an end-to-end
system that targets predictions by optimizing a loss function
based on the subsequent decisions. DFL has been shown to
outperform TS on a variety of domains (Mandi et al. 2019;
Wilder, Dilkina, and Tambe 2018; Cameron et al. 2021).

The key technical challenge with the DFL paradigm is
the gradient-based training of the ML model. Given that the
loss needs to be differentiated through the entire prediction
and optimization pipeline, a discontinuous mapping is pro-
duced when the CO problem operates on discrete variables.
To overcome these challenges, many smooth surrogate mod-
els for these discrete mappings, along with their differenti-
ation, have been proposed. For an extensive survey of the
different methodologies, interested readers are referred to
(Mandi et al. 2023)

DFL has garnered increasing attention, but the robust-
ness of these pipelines in adversarial settings remains in-
adequately understood. Robustness in a model refers to its
ability to maintain performance when subjected to adver-
sarial perturbations or novel data inputs. To employ these
pipelines effectively in real-world contexts, comprehend-
ing their robustness is crucial, as it allows us to evalu-
ate the suitability of the models in various situations. We
analyze a model’s robustness by introducing small worst-
case perturbations to the input and evaluate their impact on
the model’s overall downstream performance. The code and
data used are accessible through https://github.com/yehya-
farhat/AdvAttacks-DFL.git. To the extent of our knowl-
edge, this work is the first to analyze and compare the ro-
bustness of the different DFL methodologies under such an
adversarial settings.
Overall, this paper makes the following contributions:

• We replicate eleven DFL methods and implement two



types of adversarial attacks with proper adaptation to
cater towards Predict-then-optimize based problems

• We comprehensively evaluate the DFL methods across
three distinct problems and summarize the results

• We offer empirical insights to demonstrate that robust-
ness is highly correlated with the models ability to find
the optimal solutions with respect to the ground truth la-
bels

2 Related Work
Model robustness is a crucial concept extensively exam-
ined within the realms of deep learning and adversarial ma-
chine learning. A multitude of studies have delved deeply
into understanding and enhancing model robustness, high-
lighting the vulnerability of neural networks to specially
crafted inputs. Evasion attacks represent a methodology
where specific inputs are meticulously designed to mis-
lead a neural network, thereby undermining or altering the
model’s output. Such vulnerabilities have been meticulously
documented and analyzed in previous works (Goodfellow,
Shlens, and Szegedy 2015; Kurakin, Goodfellow, and Ben-
gio 2017). Another subtle yet potent form of undermining
model robustness is through poisoning attacks. In this ap-
proach, the adversary introduces manipulated data points
into the training dataset, intending to degrade the model’s
overall performance and reliability.
Despite the success and extensive study of evasion attacks,
their implementation and performance in non-classification
problem settings remains understudied. Regression tasks
have no natural margins as in the case of classification tasks
that lend themselves to the nice property of having finite out-
put spaces. Adversarial attacks in regression settings are hin-
dered by challenges in defining success margins and estab-
lishing evaluation metrics. Despite these challenges, strides
have been made in generalizing evasion attacks for regres-
sion problems. (Tong et al. 2018) looked at attacks in a spe-
cial case of ensemble linear models, although insightful this
linear case doesn’t capture the larger class of non-linear re-
gression problems. Other studies have focused on specific
applications of regression problems. (Ghafouri, Vorobey-
chik, and Koutsoukos 2018) Study the regression task in
cyber-physical systems by selecting an optimal threshold for
each sensor against an adversary. (Deng et al. 2020) Exam-
ine the regression task of predicting the optimal steering an-
gle in autonomous driving by using a concept they called
an adversarial threshold. They consider an attack success-
ful if the deviation between the original prediction and the
prediction of an adversarial example is below the specified
threshold. (Meng et al. 2019) Introduce two attacks for spe-
cific regression problems in the field of electroencephalo-
gram based brain-computer interfaces and utilize a similar
attack success criteria as above. (Gupta et al. 2021) Propose
a flexible adversarial attack for regression tasks and analyze
its effectiveness using various error metrics. Furthermore,
general defenses have been proposed in the context of re-
gression problems. (Nguyen and Raff 2018) introduce a use-
ful defense to reduce the effectiveness of evasion attacks by
considering adversarial attacks as a symptom of numerical

instability of the learned weight matrix.
In the context of DFL, the exploration of adversarial at-
tacks is an emerging area of study. It has been demonstrated
that effective poisoning attacks can be generated against
DFL models (Kinsey et al. 2023). Concurrently, a body of
work has emerged that focuses on bolstering DFL robust-
ness against label noise. (Johnson-Yu et al. 2023) Cast the
learning problem as Stackelberg games and provide bounds
on decision quality in the presence of adversarial label drift
and propose a learning schema to mitigate this affect by an-
ticipating label drift.

3 Background
3.1 Predict-Then-Optimize Problem Setting
Decisions are often mathematically modeled using CO prob-
lems. These problems are well-suited to a wide range of
decision-making scenarios. In many real-world applications,
certain parameters of the CO problem remain uncertain
and require inference from contextual data. The Predict-
and-Optimize problem setting involves decision models that
are represented by partially defined optimization problems,
whose specification is completed by parameters that are pre-
dicted from data.

x∗(c) = argmin
x

f(x, c) (1a)

s.t. g(x) ≤ 0 (1b)
h(x) = 0. (1c)

The goal of the optimization problem described is to find a
minimizer x∗(c) ∈ Rp of the objective function (1a), satis-
fying the constraints (1b-1c). This paper considers the prob-
lem setting where the parameter c ∈ C ⊆ Rk is unknown
and must be inferred as a function of observed empirical fea-
tures z ∈ Z ⊆ Rl. In this context, given a set of past obser-
vations pairs Dtrain = {(zi, ci)}Ni=1 The predictive task is
to learn a parameterized (by w) model mw : Z → C. Such
that the model is used to make predictions in the form of
ĉ = mw(z). Subsequently, a decision x∗(ĉ) is made based
on the predicted parameter. The overarching learning objec-
tive is to optimize the set of decisions made over the set of
observed features z ∈ Z , with respect to some evaluation
criterion on those decisions.

3.2 Frameworks for Predict-Then-Optimize
While the ML model mw is trained to predict ĉ, its perfor-
mance is evaluated on the basis of the corresponding optimal
solution of the decision model x∗(ĉ). Using standard ML
approaches, learning the model mw can only be supervised
by ground-truth c using a standard loss function L(ĉ, c),
such as mean squared error (MSE). But given that we are
concerned with optimizing the decision x∗(ĉ), it would be
favorable to train mw to make predictions ĉ that optimize
the the decision. This puts forth two different learning ap-
proaches for the model mw.

Two-Stage (TS) The conventional learning paradigm is to
generate accurate parameter predictions ĉ with respect to
the ground-truth labels c, this Two-Stage approach learns



the predictive model by minimizing a standard loss function,
such as MSE.

min
w

∑
(z,c)∈Dtrain

∥mw(z)− c∥2 (2)

The final trained model is then used to make a prediction
on a new data point z such that the prediction is used to
optimize the objective x∗(mw(z)) in Eq. (1a)

Decision-Focused learning (DFL) By contrast, DFL
trains the ML model to optimize the evaluation criteria that
measures the quality of the decision.

min
w

∑
(z,c)∈Dtrain

f(x∗(mw(z)), c)− f(x∗(c), c) (3)

Similar to the TS approach, after training the model is called
to make new predictions on new data points, which are then
passed to (1a). The advantage of DFL is the alignment of
the training objective and the testing objective f . To op-
timize the objective in DFL, it is common to use gradient
descent. This will require backpropagating through the op-
timal decision x∗. Depending on the CO problem, The gra-
dient of the optimal decision is not always easily computed.
CO problems can be categorized in terms of the form taken
by the their objectives and constraints. These forms define
the properties of the optimization mapping, such as its con-
tinuity and differentiability. This presents two major chal-
lenges: firstly, the optimization problem’s solution mapping
ĉ → x∗(ĉ) lacks a closed form that can be differentiated
directly. Secondly, depending on the problem, many useful
optimization problems exhibit non-differentiable mappings
at some points and zero-valued gradients at others, render-
ing gradient descent unusable. These challenges highlight
the need for developing methodologies that address the diffi-
culty of differentiating an optimization mapping in DFL dur-
ing gradient-based training. Various approaches suggest dif-
ferent smoothed surrogate approximations suitable for back-
propagation.

4 Methodology
4.1 Objective
The problem of adversarial attacks is closely related to the
robustness issue for a neural network, i.e. its sensitivity to
perturbations. Let m : Z → C denote the trained model, for
which either Eq. (2) or Eq. (3) was used for training to pro-
duce an output m(z). We define an additive vector ϵ ∈ Rl

to perturb the original input and get the perturbed output
m(z + ϵ). Unlike classification problems the output of the
model does not have well defined success margins, in the
classification scenario we desire no change in the response
for small change in the input. For regression problems, we
must expect some change in the response for any change in
the input. In such a setting, attacking the network amounts
to finding a perturbation ϵ of preset magnitude which makes
the output maximally deviate from a reference output. The
reference output may be defined as the model output m(z)
or the ground truth label c. In this work we are interested
in studying the behavior of the different DFL methodologies

under input perturbations, thus we will also adopt the ref-
erence output of the decision problem under the model pre-
diction x∗(m(z)) and the ground truth label x∗(c). In this
context, the measure of deviation and magnitude of pertur-
bation play an important role in the problem formulation.
We measure the output deviation using an ℓq-norm where
q ∈ [1,+∞]. It is important to underscore that opting for
this approach is logical in the case of regression problems.
The ℓ2 and ℓ1 norms are often applied as loss functions dur-
ing the training process. Conversely, the ℓ+∞ norm is com-
monly utilized when addressing matters of reliability

Given a robust predictive function mr(.) and a quality
function f(.), we would expect that

|f(mr(z))− f(mr(z + ϵ))| ≤ ∆ (4)

|mr(z)−mr(z + ϵ)| ≤ δ (5)
for some threshold ∆ and δ. Most adversarial work focuses
on attacks that violate this expectation. Making it such that
small perturbations cause drastic changes in the output. Its
important to note that satisfying both Eq. (4) and Eq. (5)
need not be necessary in the context of DFL. DFL focuses
on making predictions that lead to good quality decision,
regardless of the prediction itself. In cases where the CO
problem has non-unique optimal solutions, DFL might allow
for the satisfaction of Eq. (4), while simultaneously allowing
for the violation of Eq. (5). But in a setting where we have
a perfect predictive and robust model (with respect to the
ground truth labels) then we would expect both inequalities
to be satisfied.

In this work we focus on studying the behavior of ∆ and
δ with respect to the different DFL methodologies. Our ob-
jective is to categorize the sensitivity of each learned model
by measuring the variations in output under two distinctly
focused attacks. Additionally, we analyze the relationship
between the behavior of the downstream task f(mr(z + ϵ))
and the predictive task mr(z+ϵ), aiming to understand how
perturbations affect both tasks.

4.2 Problem Sets
Problem description We select 3 diverse problems for
benchmarking: Warcraft shortest path, Portfolio optimiza-
tion, and Knapsack. All of which have been previously used
as benchmarks in the DFL literature and their datasets are
publically available. All these problems pose both a predic-
tive and optimization task.

Warcraft Shortest Path This problem was adopted from
the work of (P. et al. 2019), utilizing the openly accessible
warcraft terrain map images dataset (guyomarch 2017). It
features images configured as a d × d grid, with each grid
cell—or pixel—assigned a specific cost that requires predic-
tion. The objective is to then identify the shortest path from
the top left-pixel to the bottom-right pixel. Unless situated
on the grid’s boundary, one may proceed in any of eight pos-
sible directions from a given pixel, framing the challenge as
a node-weighted shortest path problem on a graph with d2

vertices and up to d2 edges. This problem is transformed into
the more conventional edge-weighted shortest path problem
by dividing each weighted node into a pair of nodes, with the



original node’s weight transferred to the edge that connects
these new nodes.
The problem of shortest path can be formulated as an LP
problem with the following form:

min
x

c⊤x (6a)

s.t. Ax = b (6b)
0 ≤ x (6c)

Where A ∈ R|V |×|E| is the incidence matrix of the graph.
x ∈ R|E| is a binary vector whose entries are 1 if the cor-
responding edge is selected and 0 otherwise. b ∈ R|V | is a
vector whose entries are all 0 except the entries that corre-
sponding to the source and sink node where are 1 and -1,
respectively.

The predictive task involves the use of a convolutional
neural network (CNN) to determine the cost associated with
each node (pixel), with costs ranging from 0.8 to 9.2 based
on the pixel’s visible features. The model processes the d×d
image to output the costs for all d2 pixels.

Portfolio Optimization This problem was adopted from
the work of (Elmachtoub and Grigas 2020). The problem en-
tails predicting asset prices based on empirical data, subse-
quently a risk constrained optimization problem is solved to
obtain a portfolio that maximizes expected return. The prob-
lem formulation of Portfolio optimization can expressed as
the following:

max
x

c⊤x (7a)

s.t. x⊤Σx ≤ λ (7b)

1⊤x ≤ 1 (7c)
0 ≤ x (7d)

The Synthetic input-target pairs (z, c) are randomly gener-
ated according to a random function with a specified degree
of nonlinearity, we refer to this as Deg ∈ N. A detailed
breakdown of the random function used for input-target gen-
eration can be found in the appendix.
1 represents a vector composed entirely of ones. Σ refers to
a pre-established covariance matrix between asset returns.
The predictive task utilizes a simple linear neural network
model, whose inputs is a feature vector z ∈ Rl and output is
the return vector c ∈ Rk that represents asset prices.

Knapsack This experiment setup was adopted from the
work of (Mandi et al. 2019). The problem involves solving
the knapsack problem’s objective, which entails selecting a
subset of items with maximum value from a specified set,
while adhering to the capacity limitation. The problem for-
mulation can be written as follows:

max
x

c⊤x (8a)

s.t. w⊤x ≤ Capacity (8b)
x ∈ {0, 1} (8c)

The weights of all items and the capacity constraint are
known, hence The prediction task is to predict the value of

each item. The problem dataset utilizes the Irish Single Elec-
tricity Market Operator (SEMO) (Ifrim, O’Sullivan, and Si-
monis 2012). In this arrangement, each day is treated as an
individual optimization problem, with every half-hour repre-
senting an item in the knapsack. Consequently, both the cost
vector c and the weight vector w consist of 48 elements,
each corresponding to a half-hour segment. Each item in
the cost array is associated with an 8-dimensional feature
vector. This vector represents various attributes, encompass-
ing elements like weather conditions and projected energy
load. The weight array remains constant throughout and is
synthetically generated, as previously established by (Mandi
et al. 2019). A detailed breakdown of the synthetic weight
vector generation can be found in the appendix. As the pre-
vious problem, the predictive task entails a linear model,
whose input is a feature vector z ∈ R48×8 and output vector
c ∈ R48.

4.3 Attacks
Fast Gradient Sign Method: Prediction-Focused The
Fast Gradient Sign Method (FGSM) is a L∞ bounded attack
(Goodfellow, Shlens, and Szegedy 2015). Given a training
data point (z, c), a cost function J , and the model parame-
ters w, the adversarial data point z̃ is computed as follows

z̃ = z + ϵsign(∇zJ(w, z, c))

where the cost function J is a standard loss that calculates
the error of the prediction with respect to the ground truth
labels c, and where ϵ is the attack magnitude.

Fast Gradient Sign Method: Decision-Focused Similar
to the Prediction-Focused FGSM attack implementation, We
implement a slightly modified version of the attack by opt-
ing for a different cost function. Let J́ represent the decision
cost function that calculates the decision error of the predic-
tion with respect to the ground truth decision x∗(c) (Regret).
Similarly, we calculate the adversarial data point z̃ as

z̃ = z + ϵsign(∇zJ́(w, z, c))

Its important to note that the calculation of ∇zJ́(.) is not
always straightforward, as it will run into the same issues
of non-differentiability, and zero-valued gradients. To that
end, we will need to instead utilize the smoothed surrogate
approximations of each respective end-to-end DFL pipeline
to compute this attack.

Attack Setting In our experiments, we assess the perfor-
mance of the prediction-focused FGSM (PF) and decision-
focused FGSM (DF) attacks by varying the attack magnitude
parameter ϵ, at levels of 0.01, 0.1, and 0.15, respectively.
For each respective DFL methodology, we adopt the same
approximation used in training to allow for useful gradient
computations of ∇zJ́(.).

4.4 DFL methodologies
We adopt 10 different DFL methodologies and the two-
stage method as our baseline for comparison. All mentioned
DFL techniques are an attempt to overcome the challenge of



Table 1: Overview of the different DFL methodologies
adopted for experimentation

Methodology Problem Form
Quadratic Programming Task
Loss (QPTL) (Wilder, Dilkina,
and Tambe 2018)

LPs, ILPs

Differentiation of Blackbox
Combinatorial Solvers (DBB)
(P. et al. 2019)

Linear Objective

Fenchel-Young loss (FY) (Blon-
del, Martins, and Niculae 2020)

Linear Objective

Implicit maximum likelihood
estimation (IMLE) (Niepert,
Minervini, and Franceschi
2021)

Linear Objective

Interior Point Solving Method
(IntOpt) (Mandi and Guns
2020)

LPs, ILPs

Smart Predict Then Optimize
(SPO) (Elmachtoub and Grigas
2020)

Linear Objective

Maximum A Posteriori approx-
imation (MAP) (Mulamba et al.
2021)

General optimization
problems

Pairwise Learning to Rank
(Pairwise) (Mandi et al. 2022)

General optimization
problems

Pairwise Learning to rank Dif-
ference (Pairwise Diff) (Mandi
et al. 2022)

General optimization
problems

Listwise Learning to rank (List-
wise) (Mandi et al. 2022)

General optimization
problems

differentiating the optimization mapping by proposing dif-
ferent smoothed surrogate approximations of dL(x∗(ĉ))

dĉ or
dx∗(ĉ)

dĉ . Table 1 provides an overview of the different meth-
ods and their form adopted for comparison.

4.5 Network Architecture and Training
The network architecture for the Warcraft shortest path is a
CNN. As in (Mandi et al. 2023) we adapted the ResNet18
architecture, which includes the first five layers of ResNet18
followed by a max-pooling operation that assists in predict-
ing the underlying cost for each pixel, and a Relu activa-
tion function to ensure positive edge weights. In addressing
the Knapsack and Portfolio problems, we employ a single-
layer feed-forward neural network, devoid of hidden layers
(A linear model). The rational behind utilizing such a simple
predictive model lies in evaluating the effectiveness of the
DFL methods under conditions where predictions lack high
accuracy. We utilize Adam as our optimization algorithm
(Kingma and Ba 2017) and ReduceLROnPlateau learning
rate scheduler (Paszke et al. 2019). We utilize Cvxpylayers
(Agrawal et al. 2019) as our solver for QPTL, QP problems.
For the other methods we employ Gurobi (Gurobi Optimiza-
tion, LLC 2023) and OR-Tools (Perron and Furnon 2023)
as our solvers. The best hyperparameter selection of each

Figure 1: Knapsack capacity 120 RRE, PF Attack left, DF
attack right

model for each experiment can be found in the appendix.

4.6 Evaluation Metrics
To understand and analyze the performance of the DFL
methodologies under the proposed adversarial attacks, we
train the models using the best hyperparameters combina-
tions for each test problem, 10 trails of all the methods
are run on the test dataset. Unless otherwise mentioned the
evaluation is done based on the 4 error metrics in Table
2. In practical scenarios, instances in which the CO prob-
lem presents multiple non-unique solutions can lead a ma-
chine learning model to incorrectly predict all cost param-
eters, c or ĉ, as zero during early training. This results in
technically optimal but meaningless solutions, thereby re-
ducing interpretability and usefulness. We assume that the
optimal solution, x∗(c), is derived from an optimization or-
acle equipped with a predefined method to break ties in cases
of non-unique solutions.

5 Results and Discussion
In the next section, we assess the average performance of 11
methods in 10 trials against various adversarial attacks. The
primary objective of our research is to examine the overall
robustness of these models. Consequently, when we men-
tion the ’best’ models, we refer to those demonstrating the
least deviation from the initial solution when subjected to
both types of attacks. Note that for the Two-Stage method,
we only present metrics related to the Prediction-Focused
attack given that the model does not have a direct surrogate
decision loss function associated with it.

5.1 Knapsack Results
Two instances of the knapsack problem are under consider-
ation, each associated with a different capacity: 60 and 120.
The line plot of relative regret error with respect to the vary-
ing attack magnitudes of the problem instance with a capac-
ity of 120 is presented in figure 1. The generated box plots
for the four metrics in Table. 2 and the rest of the line plots
can be found in the appendix.

With a capacity of 120, the models exhibiting the best
overall robustness on decision quality, are QPTL, TS, DBB,



Mean Accuracy Error (MAE) =
1

Dtest

Dtest∑
i=1

∥m(zi + ϵ)− ci∥q

Fooling Error (FE) =
1

Dtest

Dtest∑
i=1

|m(zi + ϵ)−m(zi)|

Relative Regret Error (RRE) =
1

Dtest

Dtest∑
i=1

c⊤i (x
∗m(zi + ϵ)− x∗(ci))

c⊤i x
∗(ci)

Fooling Relative Regret Error (FRRE) =
1

Dtest

Dtest∑
i=1

|c
⊤
i (x

∗m(zi + ϵ)− x∗(ci))

c⊤i x
∗(ci)

− c⊤i (x
∗m(zi)− x∗(ci))

c⊤i x
∗(ci)

|

Table 2: Error Metrics Considered for Evaluation

and IMLE. SPO does relatively well under the PF attack but
is not able to hold the same performance under the DF at-
tack. Under prediction quality metrics, the best overall per-
forming models are FY, listwise, pairwise, and MAP. With a
capacity of 60, the best-performing models in terms of deci-
sion quality are DBB and IMLE. FY performs well under
the DF attack but poorly under the PF attack. SPO faces
a similar issue as observed in the 120-capacity instance: it
performs poorly under the DF attack but well under the PF
attack. Regarding prediction metrics, the best models are FY,
Listwise, Pairwise, and MAP.

There are interesting observations to note on this prob-
lem. The first is that the problem clearly has non-unique op-
timal solutions, as evidenced by all the models exhibiting
high MAE errors while tending toward an optimal decision
error. The second observation concerns the varied behavior
of these models in terms of robustness when subjected to
different types of attacks. The models with the highest initial
RRE are the least robust under the PF attack while the mod-
els with the lowest initial RRE are the most robust under the
PF attack. This behaviour is reversed when the models are
exposed to the DF attack. Under the DF attack the models
exhibiting the lowest initial RRE are the least robust, while
the models with highest initial RRE become the most robust.
We believe this is due to what the learned models accom-
plish at the end of their training cycles and how the different
attacks uniquely interact with each method. By definition the
models with the highest RRE have not learned how to make
good predictions with respect to the decision. Thus, When
these models are faced with attacks that try and maximize

prediction error the attack results in the model outputting
predictions with no consideration for the decision quality.
On the other hand the models with low initial RRE are able
to maintain their decision quality due to them having learned
how to make good predictions with respect to the decision,
irrespective of worst case perturbation with the aim of max-
imizing prediction error. We hypothesize that the reversal of
this behaviour under the DF attack is due to the methods
ability to find the optimal solution. When faced with the DF
attack most of the models exhibiting the best robustness on
the PF attack become the least robust. Assuming that the op-
timal solution has been found by those methods, maximizing
the decision error becomes more feasible. While on the other
hand, the models that have not been able to find the optimal
solution exhibit relatively small change in decision quality
under the DF attack, due the fact that these models have a
worse sense of where the optimal solution is.

5.2 Portfolio Results
We examine two versions of the Portfolio optimization prob-
lem: Degrees 1 and 16, with a noise magnitude parameter
set at 1. It’s important to note that the IntOpt method is un-
suitable in this case because the problem involves quadratic
constraints, which the IntOpt method cannot handle. In this
problem, for some instances, all the return values are nega-
tive, making portfolio optimization with zero return optimal.
In such cases, the RRE metric is undefined, as the denomi-
nator is zero. Hence, for this problem set, we instead report
the absolute regret: c⊤(x∗(m(z)) − x∗(c)). We present the
line plot of the degree 16 problem instance for the Absolute



Figure 2: Portfolio deg 16 Absolute RE, PF Attack left, DF
attack right

RE with respect to the attack magnitudes in figure 2. The rest
of the line plots and all the box plots can be found in the ap-
pendix. For this problem, all models perform relatively well,
with very negligible variation in decision quality. In such a
case the Absolute FRE provides a better glimpse into the
minor changes under different attack magnitudes.

For the Degree 16 problem instance, the models that ex-
hibit the least amount of variation under all perturbation lev-
els in terms of decision quality are FY and Listwise. With
respect to prediction quality, the best-performing models are
FY, Listwise, and MAP. For the Degree 1 problem instance,
the best-performing models across all perturbation levels in
terms of decision quality are DBB, IMLE, and FY. With re-
spect to prediction quality, the best models are FY and MAP,
with FY exhibiting a notably large interquartile range.

In addressing this problem, we observe an interesting
phenomenon: the models with low RE do not demonstrate
the expected (As in the knapsack problem) poor robustness
when subjected to the DF attack. All models maintain high
levels of robustness against both types of attacks. This re-
silience, we believe, stems from the models successfully
identifying the optimal solution based on the ground truth
label c. This corroborated by the fact that all models con-
sistently exhibit very low MAE, effectively preserving their
performance under both attack scenarios.

5.3 Warcraft Shortest Path
The evaluation of the warcraft shortest path problem for im-
age sizes of 12×12 and 24×24 are presented in the follow-
ing section. We present the line plot of the RRE with respect
to the attack magnitudes for the 24 × 24 problem instance
in figure 3. The box plots and the rest of the line plots can
be found in the appendix. We note, IntOpt and QPTL neces-
sitate the problem’s formulation as a Linear Program (LP)
and the use of a primal-dual solver. In our experiment, the
predictive machine learning model, specifically a CNN, is
tasked with predicting the cost associated with each pixel.
Training this ML model proves to be a formidable task due
to its extensive parameter set. Consequently, integrating this
model with computationally demanding components like an
interior point optimizer introduces substantial challenges.

Figure 3: WarCraft 24 × 24 image size RRE, PF Attack left,
DF attack right

Owing to these computational constraints, we were unable
to conduct experiments using IntOpt and QPTL.

On the Warcraft problem all models exhibit relatively
good robustness. On the 24×24 Image size instance, the best
overall performing models under decision quality are SPO,
IMLE and DBB. Under prediction quality the best models
are FY and MAP. On the 12× 12 problem instance, the best
models are the same as the 24×24 problem instance. Under
decision quality SPO, DBB, and IMLE are overall the best
performers while under prediction quality the best overall
models are FY and MAP.

We notice a parallel with the portfolio problem in our ob-
servations: all models demonstrate commendable robustness
against both types of attacks while maintaining a low MAE.
This lends credence to our hypothesis that a model’s deci-
sion robustness is directly linked to its ability to identify
the optimal solution in relation to the ground truth label c.
This is particularly evident in the performance of the MAP
method. It emerges as the model most adversely affected un-
der both adversarial attacks and simultaneously records the
highest MAE, thereby reinforcing our hypothesis.

6 Conclusions

In this research, we propose a hypothesis centered around
the decision quality robustness of DFL models: their robust-
ness is intricately linked to the model’s capacity to discern
the optimal solution in alignment with the ground truth la-
bel. Our empirical evidence suggests a notable pattern: when
models generate predictions that lead to optimal solutions
but deviate from ground-truth labels, they tend to be more
vulnerable to evasion attacks. Additionally, in examining the
behavior of models that identify optimal solutions deviat-
ing from the ground-truth labels, we show how their spe-
cific optimality characteristics influence their susceptibility
to differently targeted attacks. Our results reveal that such
models respond differently to various attack strategies, each
uniquely exploiting their particular form of optimality.



A Synthetic Data generation Details
A.1 Portfolio Optimization
The Synthetic input-target pairs (z, c) are randomly gener-
ated according to a random function with a specified de-
gree of nonlinearity Deg ∈ N. The procedure for gener-
ating the data is as follows: For a number of assets d and
input features of size p. The input samples xi ∈ Rp are in-
dependently and identically distributed, each element sam-
pled from a standard normal distribution N(0, 1). A random
matrix B ∈ Rd×p, whose elements Bij ∈ {0, 1} are drown
i.i.d. Bernoulli distributions with a probability of 0.5 for the
value 1. For a selected noise level η, L ∈ Rn×4 whose en-
tries are drawn uniformly over [−0.0025η, 0.0025η] is gen-
erated. Asset returns are calculated first in terms of their con-
ditional mean as:

c̄ij := (
0.05
√
p
(Bzi)j + (0.1)

1
Deg )Deg

The observed return vectors ci are defined as cij := r̄i +
Lf + 0.01ηξ, where f ∼ N(0, I4) and noise ξ ∼ N(0, Id).
This results cij to obey the covariance matrix Σ := LL⊤ +
(0.01ξ)2I which is used to form our problem constraint and
bound the risk, which we define as λ := 2.25e⊤Σe where
is a constant vector that represents the equal allocation so-
lution. The value of the noise magnitude η is set at 1. We
assume that the covariance matrix of the assest returns does
not depend on the features. The values Σ and λ are constant
and randomly generated for each setting.

A.2 Knapsack
The dataset, derived from the Irish Single Electricity Mar-
ket Operator (SEMO) is structured such that each day repre-
sents an optimization case, and every half-hour is equivalent
to an item in a knapsack problem. Accordingly, both the cost
vector c and weight vector w have 48 elements, each repre-
senting a half-hour. Every cost vector element is linked to
an 8-dimensional feature vector. The weight vector remains
constant, and its values are synthetically generated using the
same approach as in (Mandi et al. 2019) Each of the 48 half-
hour periods is assigned a weight wi by choosing from the
set 3, 5, 7. To create a correlation between the weights of
the items and their values, the energy price vector is mul-
tiplied by the weight vector. This is further randomized by
adding Gaussian noise ξ ∼ N(0, 25), resulting in the final
item values ci. The total weight for each instance is 240.

B Hyperparameter Selection
The hyperparameter selection for each method and experi-
ment are selected from (Mandi et al. 2023). The authors find
the best results through grid search. In this section we pro-
vide the list of the used hyperparameters for reproducibility.

C Appendix All Results
In the main text, we present line plots for a single problem
instance and the RRE metric to save space. This section in-
cludes all results and plots.

Figure 4: Knapsack capacity 120, RRE

Figure 5: Knapsack capacity 120, MAE

Figure 6: Knapsack capacity 120, FRRE



Capacity 60 120
PF (lr) 0.5 1.
SPO (lr) 0.5 1.
DBB (lr, λ) (0.5, 0.1) (1., 1.)
IMLE (lr, λ, ϵ, κ) (0.5, 0.1, 0.5, 5) (0.5, 0.1, 0.1, 5)
FY (lr, ϵ) (1., 0.005) (1., 0.5)
IntOpt (lr, µ, damping) (0.5, 0.01, 10.) (0.5, 0.1, 10.)
QPTL (lr, µ) (0.5, 10.) (0.5, 1.)
Listwise (lr, τ ) (1., 0.001) (1., 0.001)
Pairwise (lr, Θ) (0.5, 10.) (0.5, 10.)
PairwiseDiff (lr) 1. 1.
MAP (lr) 1. 1.

Table 3: Optimal Hyperparameter Combination for Knapsack

Image Size 12 24
PF (lr) 0.001 0.001
SPO (lr) 0.005 0.005
DBB (lr, λ) (0.001, 10.) (0.001, 100.)
IMLE (lr, λ, ϵ, κ) (0.001, 10., 0.05, 50) (0.001, 10., 0.05, 50)
FY (lr, ϵ) (0.01, 0.01) (0.01, 0.01)
Listwise (lr, τ ) (0.005, 0.5) (0.005, 0.5)
Pairwise (lr, Θ) (0.01, 0.1) (0.01, 0.1)
PairwiseDiff (lr) 0.005 0.005
MAP (lr) 0.005 0.005

Table 4: Optimal Hyperparameter Combination for Warcraft shortest path

Deg 1 16
PF (lr) 0.01 0.05
SPO (lr) 0.5 0.5
DBB (lr, λ) (1., 0.1) (1., 0.1)
IMLE (lr, λ, ϵ, κ) (0.5, 0.1, 0.1, 5) (0.5, 0.1, 0.05,5)
FY (lr, ϵ) (0.1, 0.01) (1., 2.)
QPTL (lr, µ) (0.1, 10.) (0.05, 10.)
Listwise (lr, τ ) (0.1, 0.01) (0.05, 0.005)
Pairwise (lr, Θ) (0.01, 0.01) (0.1, 0.05)
PairwiseDiff (lr) 0.1 0.05
MAP (lr) 0.01 1.

Table 5: Optimal Hyperparameter Combination for portfolio optimization



Figure 7: Knapsack capacity 120, FE

Figure 8: Knapsack capacity 60, RRE

Figure 9: Knapsack capacity 60, MAE

Figure 10: Knapsack capacity 60, FRRE

Figure 11: Knapsack capacity 60, FE

Figure 12: Knapsack capacity 120, Perturbation Magnitude
0.15



Figure 13: Knapsack capacity 120, Perturbation Magnitude
0.1

Figure 14: Knapsack capacity 120, Perturbation Magnitude
0.01

Figure 15: Knapsack capacity 60, Perturbation Magnitude
0.15

Figure 16: Knapsack capacity 60, Perturbation Magnitude
0.1

Figure 17: Knapsack capacity 60, Perturbation Magnitude
0.01

Figure 18: Warcraft img size 12× 12, RRE



Figure 19: Warcraft img size 12× 12, MAE

Figure 20: Warcraft img size 12× 12, FRRE

Figure 21: Warcraft img size 12× 12, FE

Figure 22: Warcraft img size 24× 24, RRE

Figure 23: Warcraft img size 24× 24, MAE

Figure 24: Warcraft img size 24× 24, FRRE



Figure 25: Warcraft img size 24× 24, FE

Figure 26: WarCraft img size 12 × 12, Perturbation Magni-
tude 0.15

Figure 27: WarCraft img size 12 × 12, Perturbation Magni-
tude 0.1

Figure 28: WarCraft img size 12 × 12, Perturbation Magni-
tude 0.01

Figure 29: WarCraft img size 24 × 24, Perturbation Magni-
tude 0.15

Figure 30: WarCraft img size 24 × 24, Perturbation Magni-
tude 0.1



Figure 31: WarCraft img size 24 × 24, Perturbation Magni-
tude 0.01

Figure 32: Portfolio deg 16, Absolute RE

Figure 33: Portfolio deg 16, MAE

Figure 34: Portfolio deg 16, Absolute FRE

Figure 35: Portfolio deg 16, FE

Figure 36: Portfolio deg 1, Absolute RE



Figure 37: Portfolio deg 1, MAE

Figure 38: Portfolio deg 1, Absolute FRE

Figure 39: Portfolio deg 1, FE

Figure 40: Portfolio Degree 16, Perturbation Magnitude 0.15

Figure 41: Portfolio Degree 16, Perturbation Magnitude 0.1

Figure 42: Portfolio Degree 16, Perturbation Magnitude 0.01



Figure 43: Portfolio Degree 1, Perturbation Magnitude 0.15

Figure 44: Portfolio Degree 1, Perturbation Magnitude 0.1

Figure 45: Portfolio Degree 1, Perturbation Magnitude 0.01
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